Abstract

Alternate wetting and drying (AWD) is a low-cost innovation that enables farmers to adapt to increasingly water scarcity conditions (such as drought), increase overall farm production efficiency, and mitigate greenhouse gas (GHG) emissions. It is seen as a pathway for transforming agri-food systems into more resilient, productive, biologically diverse, and equitable forms, ensuring our commitments to the UN Sustainable Development Goals (SDGs). This paper uses scaling up and innovation uncertainty frameworks to review the success and challenges of AWD's 20-year scaling trajectory in the Philippines and explain the key factors that have influenced its outcomes. The framework adapted for this study is also used to examine the fitness between the scaling context and requirements, organizational mission, and corresponding capabilities. Findings show the innovation platform that vertically integrated key actors and locally adapted AWD has helped foster essential breakthroughs in creating an enabling environment that took AWD to national policy adoption in the Philippines. However, the dominant focus on technology transfer, product focus, and preference for controlled environments in the scaling practice has neglected many important contextual factors, allowing mismatches in enabling policy incentives, institutions, and scale to diminish the impacts of AWD in gravity-based systems. Our findings suggest that rethinking and re-envisioning the ways in which the impact can be scaled in irrigation rice systems using AWD is critical to sustaining food security and making the agriculture sector more resilient to climate change.

Highlights

  • In any rice-based developing economy, irrigation is a precondition for boosting agricultural production

  • The novel component of AWD involves the development of a low-cost field water tube for monitoring the depth of ponded water and science-based guidance for managing the depth of the water below the surface of the soil to optimize water savings without incurring yield penalty (Bouman and Tuong, 2001; Belder et al, 2004)

  • Through the lens of innovation uncertainty, this review analyzes how scaling interventions have dealt with knowledge uncertainties surrounding the adoption and benefits of AWD in various irrigation systems, how trade-offs occur across agroecological systems and governance scales, and how these interactions unraveled cross-scale and cross-level issues that mitigate the resulting outcomes and impacts

Read more

Summary

INTRODUCTION

In any rice-based developing economy, irrigation is a precondition for boosting agricultural production. In terms of CO2 emissions, is estimated that AWD can potentially mitigate 91.2 MtCO2e within a 2015–2050 timeframe (USAID, 2015) For these reasons, the Philippine Government has taken steps to scale AWD in all national irrigation systems (NIS) and considers the technique a key adaptation and mitigation measure for meeting its Nationally Determined Contributions (NDC) (Arnaoudov et al, 2015), the official country commitment for achieving the goals of the Paris Climate Agreement. Scaling to a larger area, e.g., from farm fields to irrigated rice-based food systems, is often associated with greater uncertainty because institutional and contextual complexity grows as system boundaries enlarge (Wigboldus and Leeuwis, 2013). This data gave us a better, though partial, glimpse of the rationale behind the scaling programs, and the associated adaptation of activities along the way

RESULTS AND DISCUSSIONS
Findings of the review
CONCLUSIONS AND RECOMMENDATIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call