Abstract
Developing sustainable and effective treatments for chronic venous insufficiency (CVI) is crucial. In this study, we propose an innovative restorative approach utilizing hydrogels derived from the decellularized extracellular matrix (dECM) of cadaveric vascular tissues, adipose-derived stem cells (ADSCs), and gold nanoparticles (AuNPs). This therapeutic method leverages waste valorization by repurposing discarded cadaveric tissues from slaughterhouse livestock. The dECM hydrogels, enriched with ADSCs and AuNPs, offer a biocompatible scaffold that supports cellular differentiation and vascular integrity. Our approach addresses the limitations of current allo-, auto-, and xenograft methods by enhancing integration and functionality while potentially reducing costs through sustainable practices. This study explores functionalized hydrogel formulation solely generated from agri-food waste, gelation mechanisms, and preliminary cost-effectiveness, presenting a promising new avenue for treating early-stage varicose veins that can ultimately be translated to human models using discarded tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.