Abstract

In this paper, the effect of quantum interference on the entanglement of a driven V-type three-level atom and its spontaneous emission field was investigated by using the quantum entropy. The results indicate that, in the absence of quantum interference the atom and its spontaneous emission field are always entangled at the steady-state. But, in the presence of full quantum interference their steady-state entanglement depends on the atomic parameters. Specifically, with appropriate atomic parameters they can be entangled or disentangled at the steady-state. We realized that the steady-state entanglement is due to completely destructive nature of quantum interference. On the contrary, the steady-state disentanglement is due to instructive nature of quantum interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.