Abstract
The mechanism of muscle weakness was investigated in an Australian family with an M9R mutation in TPM3 (alpha-tropomyosin(slow)). Detailed protein analyses of 5 muscle samples from 2 patients showed that nemaline bodies are restricted to atrophied Type 1 (slow) fibers in which the TPM3 gene is expressed. Developmental expression studies showed that alpha-tropomyosin(slow) is not expressed at significant levels until after birth, thereby likely explaining the childhood (rather than congenital) disease onset in TPM3 nemaline myopathy. Isoelectric focusing demonstrated that alpha-tropomyosin(slow) dimers, composed of equal ratios of wild-type and M9R-alpha-tropomyosin(slow), are the dominant tropomyosin species in 3 separate muscle groups from an affected patient. These findings suggest that myopathy-related slow fiber predominance likely contributes to the severity of weakness in TPM3 nemaline myopathy because of increased proportions of fibers that express the mutant protein. Using recombinant proteins and far Western blot, we demonstrated a higher affinity of tropomodulin for alpha-tropomyosin(slow) compared with beta-tropomyosin; the M9R substitution within alpha-tropomyosin(slow) greatly reduced this interaction. Finally, transfection of the M9R mutated and wild-type alpha-tropomyosin(slow) into myoblasts revealed reduced incorporation into stress fibers and disruption of the filamentous actin network by the mutant protein. Collectively, these results provide insights into the clinical features and pathogenesis of M9R-TPM3 nemaline myopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.