Abstract
Homozygous mdg mdg mice die at birth and express a syndrome of abnormalities, the most striking of which is a gross failure of skeletal muscle development. Recently, additional abnormalities in the development of nerve-muscle relationships have been recognized; in particular, on muscle fibers within the diaphragm, motor end plates are inappropriately dispersed and, in all muscles, there is a paucity of the 16 S form of acetylcholinesterase (AChE). These abnormalities could result entirely as secondary consequences of the primary muscle defect or from expression of the mdg defect in additional cell types, e.g., motor neurons. To determine if the muscle genotype alone is responsible for these defects in dysgenic mice, chimeras composed of both dysgenic and normal cells have been investigated. Different glucosephosphate isomerase variants existed in the mdg mdg and normal cells comprising these chimeras and the mutant, normal, or mosaic genotypes of chimera diaphragm and skeletal muscle was estimated by measuring the relative proportions of each isozyme. In two chimeras, the diaphragm innervation pattern was revealed by AChE cytochemistry and in both, discrete regions of abnormally dispersed and normally restricted motor end-plate zones were observed. No correlation between these patterns of innervation and the assessed genotype of the muscle fibers existing in each area was observed. The relative 16 S AChE content in the limbs of four chimeras was found to range from 2.5 to 42.0%. Here also, no correlation between 16 S AChE content and the muscle genotype was observed. The results of these investigations are not consistent with a model of mdg mdg pathogenesis in which only the skeletal muscle is primarily affected; an extramuscular deficiency responsible for at least part of the full mdg mdg syndrome is therefore suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.