Abstract

In this discussion, we consider two examples. The first example concerns the Old Faithful data, which the authors (Cerioli, Riani, Atkinson, Corbellini in Stat Methods Appl, to appear) discuss in detail in their paper. The second example, which is taken from www.kaggle.com , is based on the prices and other attributes of 53,900 diamonds. The point of our discussion is to demonstrate that the process of producing valid models and then looking at diagnostics, that compare least squares and robust fits, can also effectively identify outliers and/or important structure missing from the model. Using this approach, we identify a dramatic change point in the diamonds data. We are very curious about what information the sophisticated monitoring methods produce about this change point and its effects on the outcome variable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.