Abstract

Common spatial pattern (CSP) is a method commonly used to enhance the effects of event-related desynchronization and event-related synchronization present in multichannel electroencephalogram-based brain-computer interface (BCI) systems. In the present study, a novel CSP sub-band feature selection has been proposed based on the discriminative information of the features. Besides, a distinction sensitive learning vector quantization based weighting of the selected features has been considered. Finally, after the classification of the weighted features using a support vector machine classifier, the performance of the suggested method has been compared with the existing methods based on frequency band selection, on the same BCI competitions datasets. The results show that the proposed method yields superior results on "ay" subject dataset compared against existing approaches such as sub-band CSP, filter bank CSP (FBCSP), discriminative FBCSP, and sliding window discriminative CSP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.