Abstract

An electroencephalography (EEG)-based Motor Imagery Brain-Computer Interface (MI-BCI) requires a long setup time if a large number of channels is used, and EEG from noisy or irrelevant channels may adversely affect the classification performance. To address this issue, this paper proposed 2 approaches to systematically select discriminative channels for EEG-based MI-BCI. The proposed Discriminative Channel Addition (DCA) approach and the Discriminative Channel Reduction (DCR) approach selects subject-specific discriminative channels by iteratively adding or removing channels based on the cross-validation classification accuracies obtained using the Filter Bank Common Spatial Pattern algorithm. The performances of the proposed approaches were evaluated on the BCI Competition IV Dataset 2a. The results on 2-class and 4-class MI data showed that DCA, which iteratively adds channels, selected 13~14 channels that consistently yielded better cross-validation accuracies on the training data and session-to-session transfer accuracies on the evaluation data compared to the use of a full 22-channel setup. Hence, this results in a reduced channel setup that could improve the classification accuracy of the MI-BCI after removing less discriminative channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call