Abstract
Radix Pseudostellariae is one of the most popular Traditional Chinese Medicine (TCM) for promoting the immune system, treating asthenia after illnesses with a long history in China and some other Asian countries. Rapid discrimination of R. Pseudostellariae according to geographical origin is crucial to pharmacodynamic action control. FT-NIR spectroscopy and supervised pattern recognition was attempted to discriminate R. Pseudostellariae according to geographical origin in this work. LDA, ANN and SVM were used to construct the discrimination models based on PCA, respectively. The number of PCs and model parameters were optimized by crossvalidation in the constructing model. The performances of three discrimination models were compared. Experimental results showed that the performance of SVM model is the best among three models. The optimal SVM model was achieved when 5 PCs were used, discrimination rates being 100% in the training and 88% in prediction set. The overall results demonstrated that FT-NIR spectroscopy has a high potential to discriminate qualitatively R. Pseudostellariae according to geographical origins by means of an appropriate supervised pattern recognition technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.