Abstract

Near infrared (NIR) spectroscopy combined with multivariate calibration was attempted to analyze free amino acid content of Radix Pseudostellariae. The original spectra of Pseudostellariae samples in wavelength range of 10000–4000 cm −1 were acquired. Partial least squares (PLS), kernel PLS (k-PLS), back propagation neural network (BP-NN), and support vector regression (SVR) algorithms were performed comparatively to develop calibration models. Some parameters of the calibration models were optimized by cross-validation. The performance of BP-NN model was better than PLS, k-PLS, and SVR models. The root mean square error of prediction (RMSEP) and the correlation coefficient ( R) of BP-NN model were 0.687 and 0.889 in prediction set respectively. Results showed that NIR spectroscopy combined with multivariate calibration has significant potential in quantitative analysis of free amino acid content in Radix Pseudostellariae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.