Abstract
Rapid detection of wheat flour grade played an important role in the food industry. In this work, hyperspectral technology was used to detect five types of wheat flour. An analysis model was established based on the reflectance of samples at 968 ∼ 2576 nm. Moreover, multivariate scattering correction (MSC), standard normalized variate (SNV), and Savitzky-Golay (S-G) convolution smoothing were used for preprocessing, which was employed to reduce the influence of noise in the original spectrum. In order to simplify the model, competing adaptive reweighted sampling (CARS), successive projection algorithm (SPA), uninformative variable elimination (UVE) and the UVE-CARS algorithm were applied to extract feature wavelengths. Both partial least squares discriminant analysis (PLS-DA) model and support vector machine (SVM) model were established according to feature wavelengths. Furthermore, particle swarm optimization (PSO) algorithm was adopted to optimize the search of SVM model parameters, such as the penalty coefficient c and the regularization coefficient g. Experimental results suggested that the non-linear discriminant model for wheat flour grades was better than the linear discriminant model. It was considered that the MSC-UVE-CARS-PSO-SVM model achieved the best forecasting results for wheat flour grade discrimination, with 100% accuracy both in the calibration set and the validation set. It further shows that the classification of wheat flour grade can be effectively realized by using the hyperspectral and SVM discriminant analysis model, which proves the potential of hyperspectral reflectance technology in the qualitative analysis of wheat flour grade.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have