Abstract

BackgroundWe aimed to develop radiomic models based on different phases of computed tomography (CT) imaging and to investigate the efficacy of models for diagnosing mediastinal metastatic lymph nodes (LNs) in non-small cell lung cancer (NSCLC).MethodsEighty-six NSCLC patients were enrolled in this study, and we selected 231 mediastinal LNs confirmed by pathology results as the subjects which were divided into training (n = 163) and validation cohorts (n = 68). The regions of interest (ROIs) were delineated on CT scans in the plain phase, arterial phase and venous phase, respectively. Radiomic features were extracted from the CT images in each phase. A least absolute shrinkage and selection operator (LASSO) algorithm was used to select features, and multivariate logistic regression analysis was used to build models. We constructed six models (orders 1–6) based on the radiomic features of the single- and dual-phase CT images. The performance of the radiomic model was evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV).ResultsA total of 846 features were extracted from each ROI, and 10, 9, 5, 2, 2, and 9 features were chosen to develop models 1–6, respectively. All of the models showed excellent discrimination, with AUCs greater than 0.8. The plain CT radiomic model, model 1, yielded the highest AUC, specificity, accuracy and PPV, which were 0.926 and 0.925; 0.860 and 0.769; 0.871 and 0.882; and 0.906 and 0.870 in the training and validation sets, respectively. When the plain and venous phase CT radiomic features were combined with the arterial phase CT images, the sensitivity increased from 0.879 and 0.919 to 0.949 and 0979 and the NPV increased from 0.821 and 0.789 to 0.878 and 0.900 in the training group, respectively.ConclusionsAll of the CT radiomic models based on different phases all showed high accuracy and precision for the diagnosis of LN metastasis (LNM) in NSCLC patients. When combined with arterial phase CT, the sensitivity and NPV of the model was be further improved.

Highlights

  • We aimed to develop radiomic models based on different phases of computed tomography (CT) imaging and to investigate the efficacy of models for diagnosing mediastinal metastatic lymph nodes (LNs) in nonsmall cell lung cancer (NSCLC)

  • Participants were selected according to the inclusion and exclusion criteria and were limited to patients treated between January 2015 and June 2018 at our hospital, Lesion segmentation We performed manual segmentation on arterial phase CT images using MIM Maestro version 6.8.2 (MIM software, Cleveland, OH), and pathologically confirmed LNs were defined as regions of interest (ROIs)

  • The sensitivity and negative predictive value (NPV) of the model were significantly better when combined with arterial phase CT in our study, which may have been because temporal changes in texture features can potentially provide diagnostic and prognostic information and canincrease the utility of contrast-enhanced CT

Read more

Summary

Introduction

We aimed to develop radiomic models based on different phases of computed tomography (CT) imaging and to investigate the efficacy of models for diagnosing mediastinal metastatic lymph nodes (LNs) in nonsmall cell lung cancer (NSCLC). The scope of lymph node (LN) dissection and the LN areas targeted by radiotherapy remain controversial among different medical centers. Positron emission tomography (PET)/computed tomography (CT) is a relatively accurate imaging technique for the diagnosis of metastatic LNs, with a relatively high specificity for LN staging in patients with NSCLC [2, 3]. A great need exists for sensitive and accurate methods to preoperatively assess the status of LNs, which could help to decrease the rate of radical surgery, select appropriate chemotherapy regimens, and delineate the radiotherapy target area

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.