Abstract

Objective To establish radiomics models based on different CT scaning phases to distinguish mediastinal metastatic lymph nodes in NSCLC and to explore the diagnostic efficacy of these models. Methods The CT images of 86 preoperative patients with NSCLC who were performed both plain and enhanced CT scans were analyzed retrospectively. The 231 mediastinal lymph nodes were enrolled in this study which were divided into two independent cohorts: 163 lymph nodes enrolled from January 2015 to June 2017 constituted the training cohort, and 68 lymph nodes enrolled from July 2017 to June 2018 constituted the validation cohort. The regions of interest (ROIs) were delineated on plain scan phase, arterial phase and venous phase CT images respectively, and 841 features were extracted from each ROI. LASSO-logistic regression analysis was used to select features and develop models. The area under the ROC curve (AUC value), sensitivity, specificity, accuracy, positive predictive value and negative predictive value of different models for distinguishing metastatic lymph nodes were compared. Results A total of 6 models were established, and the AUC values were all greater than 0.800. The plain CT model yielded the highest AUC, specificity, accuracy and positive predictive value with 0.926, 0.860, 0.871, 0.906 in the training cohort and 0.925, 0.769, 0.882, 0.870 in the validation cohort. When plain and venous phase CT images were combined with arterial phase CT images, the sensitivity and negative predictive value of the models increased from 0.879, 0.821 and 0.919, 0.789 to 0.949, 0.878 and 0.979, 0.900 respectively. Conclusions The CT radiomics model could be used to assist the clinical diagnosis of lymph nodes. The AUC value of the model based on plain scanning was the highest, while the sensitivity and negative predictive value of the model could be improved by combining the arterial phase CT images. Key words: Non-small cell lung cancer; Computed tomography; Radiomics; Mediastinum lymph node

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.