Abstract
Discretization translates the continuous functions into discrete version making them more adaptable for numerical computation and application in applied mathematics and computer sciences. In this article, discrete analogues of a generalization method of generating a new family of distributions is provided. Several new discrete distributions are derived using the proposed methodology. A discrete Weibull-Geometric distribution is considered and various of its significant characteristics including moment, survival function, reliability function, quantile function, and order statistics are discussed. The method of maximum likelihood and the method of moments are used to estimate the model parameters. The performance of the proposed model is probed through a real data set. A comparison of our model with some existing models is also given to demonstrate its efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.