Abstract

Continuous casting machines (CCM) provide high quality metal. Optimization of technological processes, at present, cannot be based only on an empirical approach based on a generalization of production experience. This is due to the fact that each caster is a complex technical system with its own specifics and features. The improvement of continuous casting technology is based, first of all, on the creation of mathematical models describing technological processes taking into account many technological and structural factors. When modeling crystallization processes, most researchers, in order to simplify the solution of the problem, consider stationary plane-parallel models. Such models cannot describe the studied phenomenon well in principle and therefore have a limited scope. Therefore, the development of methods for solving the unsteady spatial model of continuous casting is of great scientific interest and expands the possibilities of solving very complex boundary value problems with phase transitions. The finite element method (FEM) is one of the most universal numerical methods for solving differential and integral equations and their systems. FEM leads to a system of algebraic equations. The article describes the use of FEM for numerical modeling of the solidification process of an ingot in a continuous casting mold with the aim of conducting computational experiments. The discretization process of the system of differential equations and the problem solution domain is presented. In addition, an algorithm of finite-difference approximation of non-stationary members of the equations is described. To sample the region, three-dimensional finite elements in the form of a parallelepiped with nodes located at the vertices of the elements are used. The solution is in the space of piecewise linear functions.

Highlights

  • Optimization of technological processes, at present, cannot be based only on an empirical approach based on a generalization of production experience

  • The improvement of continuous casting technology is based, first of all, on the creation of mathematical models describing technological processes taking into account many technological and structural factors

  • The development of methods for solving the unsteady spatial model of continuous casting is of great scientific interest and expands the possibilities of solving very complex boundary value problems with phase transitions

Read more

Summary

Дискретизация системы дифференциальных уравнений

Основой метода конечных элементов (МКЭ), основные положения которого описаны в [3,4,5,6], является замена непрерывной модели ее дискретной моделью. Область определения функции приближенно представим в виде совокупности конечного числа непересекающихся подобластей e (конечных элементов), связанных между. Дискретная модель включает в себя множество значений искомой функции на некотором конечном числе точек (глобальных узлов) области ее определения. E – объем элемента e ; Se – часть границы e , лежащая на S ; F – F = c Fo. Отметим, что интеграл по поверхности Se в равенстве (8) будет появляться только для элементов, боковые поверхности которых, лежат на поверхностях слитка, граничащих со стенками кристаллизатора. В условии (5) примем, что на узкой грани слитка тепловой поток отсутствует qx = 0 , а на широкой грани слитка исходящий тепловой поток задан в виде qy = f (z), значения которого будут взяты из литературы. Что величины, входящие в интегралы из (9), постоянны по подобласти и равны их значению в центре элемента, тогда получаем: Nle Nme d e ec e m dx e dy e dz e. Следовательно, необходимо вычислять локальные матрицы, коэффициенты которых заданы как интегралы вида: dy e dz

Дискретизация области решения
Интегралы вида:
Дискретизация нестационарных членов системы дифференциальных уравнений
Дискретизация граничных элементов
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call