Abstract
Cardiovascular diseases (CVDs) are the leading global cause of mortality, necessitating advanced diagnostic tools for early detection. The electrocardiogram (ECG) is pivotal in diagnosing cardiac abnormalities due to its non-invasive nature. This study aims to propose a novel approach for ECG signal classification, addressing the challenges posed by the complexity of ECG signals associated with various diseases. Our method integrates Discrete Wavelet Transform (DWT) for feature extraction, capturing salient features of cardiovascular diseases. Subsequently, the gcForest model is employed for efficient classification. The approach is tested on the MIT-BIH Arrhythmia Database. The proposed method demonstrates promising results on the MIT-BIH Arrhythmia Database, achieving a test accuracy of 98.55%, recall of 98.48%, precision of 98.44%, and an F1 score of 98.46%. Additionally, the model exhibits robustness and low sensitivity to hyper-parameters. The combined use of DWT and the gcForest model proves effective in ECG signal classification, showcasing high accuracy and reliability. This approach holds potential for improving early detection of cardiovascular diseases, contributing to enhanced cardiac healthcare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Technology and health care : official journal of the European Society for Engineering and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.