Abstract

This article presents the dynamics of a discrete-time prey-predator system with square root functional response incorporating θ-logistic growth. This type of functional response is used to study the dynamics of the prey--predator system where the prey population exhibits herd behavior, i.e., the interaction between prey and predator occurs along the boundary of the population. The existence and stability of fixed points and Neimark-Sacker Bifurcation (NSB) are analyzed. The phase portraits, bifurcation diagrams and Lyapunov exponents are presented and analyzed for different parameters of the model. Numerical simulations show that the discrete model exhibits rich dynamics as the effect of θ-logistic growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.