Abstract

A discrete-time prey–predator model with Holling type II is investigated. For this model, the existence and stability of three fixed points are analyzed. The bifurcation diagrams, phase portraits and Lyapunov exponents are obtained for different parameters of the model. The fractal dimension of a strange attractor of the model was also calculated. Numerical simulations show that the discrete model exhibits rich dynamics compared with the continuous model, which means that the present model is a chaotic, and complex one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.