Abstract
Classical option pricing theories are usually built on the law of one price, neglecting the impact of market liquidity that may contribute to significant bid-ask spreads. Within the framework of conic finance, we develop a stochastic liquidity model, extending the discrete-time constant liquidity model of Madan (2010). With this extension, we can replicate the term and skew structures of bid-ask spreads typically observed in option markets. We show how to implement such a stochastic liquidity model within our framework using multidimensional binomial trees and we calibrate it to call and put options on the S&P 500.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have