Abstract

In this paper, the infinite horizon optimal tracking control problem is solved online and forward-in-time for leader follower based formation control of nonholonomic mobile robots. Using the back-stepping approach and the kinematic controller developed in our previous work, the dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques to track the designed control velocities. The proposed adaptive dynamic programming approach uses neural networks (NNs) to solve the optimal formation control problem in discrete-time in the presence of unknown internal dynamics and a known control coefficient matrix. All NNs are tuned online using novel weight update laws, and the stability of the entire formation is demonstrated using Lyapunov methods. Numerical simulations are also provided to demonstrate the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.