Abstract
The partial differential equations describing distributed parameter systems may often be reduced to transcendental transfer functions with the aid of appropriate boundary conditions. In the analysis and synthesis of closed loop systems, the transcendental transfer functions have to be approximated in a suitable manner. In this paper, discrete-time model of distributed parameter systems is obtained. The model employs a sample and hold circuit in the loop. The response of the model system is compared with the response obtained by approximating the transcendental transfer function by root factor and other approximations. The stability of linear and nonlinear systems with distributed parameters is investigated by employing the Mikhailov stability criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.