Abstract

In this paper, the discrete-time control of decentralized continuous-time systems, which have approximate decentralized fixed modes, is studied. It is shown that under certain conditions, discrete-time controllers can improve the overall performance of the decentralized control system, when a linear time-invariant continuous-time controller is ineffective. In order to obtain these conditions, a quantitative measure for different types of approximate fixed modes in a decentralized system is given. In this case, it is shown that discrete-time zero-order hold (ZOH) controllers, and in particular, that generalized sampled-data hold functions (GSHF), can significantly improve the overall performance of the resultant closed-loop system. The proposed sampled-data controller is, in fact, a linear time-varying controller for the continuous-time system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call