Abstract

A new algorithm, the discrete ordinates radiation element method (DOREM), for modeling radiative heat transfer in inhomogeneous three-dimensional participating media is described. The DOREM uses advantages of the both the radiation element method (REM) and the discrete ordinates method. Benchmark comparisons are conducted against several radiation models. The DOREM successfully implements radiative heat transfer simulations precisely, since false scattering never occurs. The DOREM has advantages of computational speed against Monte Carlo, and the CPU time and the memory size of the DOREM are 82 times faster and 767 times smaller at the maximum than that of the REM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.