Abstract

Mathematical modeling is a tool used for understanding diseases dynamics. The discrete-time model is an especial case in modeling that satisfactorily describes the epidemiological dynamics because of the discrete nature of the real data. However, discrete models reduce their descriptive and fitting potential because of assuming a homogeneous population. Thus, in this paper, we proposed contagion probability functions according to two infection paradigms that consider factors associated with transmission dynamics. For example, we introduced probabilities of establishing an infectious interaction, the number of contacts with infectious and the level of connectivity or social distance within populations. Through the probabilities design, we overcame the homogeneity assumption. Also, we evaluated the proposed probabilities through their introduction into discrete-time models for two diseases and different study zones with real data, COVID-19 for Germany and South Korea, and dengue for Colombia. Also, we described the oscillatory dynamics for the last one using the contagion probabilities alongside parameters with a biological sense. Finally, we highlight the implementation of the proposed probabilities would improve the simulation of the public policy effect of control strategies over an infectious disease outbreak.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.