Abstract
Global and local mass conservation for velocity fields associated with saturated porous media flow have long been recognized as integral components of any numerical scheme attempting to simulate these flows. In this work, we study finite element discretizations for saturated porous media flow that use Taylor–Hood (TH) and Scott–Vogelius (SV) finite elements. The governing equations are modified to include a stabilization term when using the TH elements, and we provide a theoretical result that shows convergence (with respect to the stabilization parameter) to pointwise mass‐conservative solutions. We also provide results using the SV approximation pair. These elements are pointwise divergence free, leading to optimal convergence rates and numerical solutions. We give numerical results to verify our theory and a comparison with standard mixed methods for saturated flow problems. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 625–640, 2014
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.