Abstract

The Lagrange problem is established in the discrete field theory subject to constraints with values in a Lie group. For the admissible sections that satisfy a certain regularity condition, we prove that the critical sections of such problems are the solutions of a canonically unconstrained variational problem associated with the Lagrange problem (discrete Lagrange multiplier rule). This variational problem has a discrete Cartan 1-form, from which a Noether theory of symmetries and a multisymplectic form formula are established. The whole theory is applied to the Euler-Poincaré reduction in the discrete field theory, concluding as an illustration with the remarkable example of the harmonic maps of the discrete plane in the Lie group SO(n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.