Abstract

In this paper, we study a discrete variational optimal control problem for a rigid body. The cost to be minimized is the external torque applied to move the rigid body from an initial condition to a pre-specified terminal condition. Instead of discretizing the equations of motion, we use the discrete equations obtained from the discrete Lagrange---d'Alembert principle, a process that better approximates the equations of motion. Within the discrete-time setting, these two approaches are not equivalent in general. The kinematics are discretized using a natural Lie-algebraic formulation that guarantees that the flow remains on the Lie group SO(3) and its algebra $\mathfrak{s}\mathfrak{o}(3)$ . We use the Lagrange method for constrained problems in the calculus of variations to derive the discrete-time necessary conditions. We give a numerical example for a three-dimensional rigid body maneuver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.