Abstract
A discrete Fourier analysis on the fundamental domain Ωd of the d-dimensional lattice of type Ad is studied, where Ω2 is the regular hexagon and Ω3 is the rhombic dodecahedron, and analogous results on d-dimensional simplex are derived by considering invariant and anti-invariant elements. Our main results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the simplex is shown to satisfy an explicit compact formula and the Lebesgue constant of the interpolation is shown to be in the order of (log n)d. The basic trigonometric functions on the simplex can be identified with Chebyshev polynomials in several variables already appeared in literature. We study common zeros of these polynomials and show that they are nodes for a family of Gaussian cubature formulas, which provides only the second known example of such formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.