Abstract

A discrete Fourier analysis on the dodecahedron is studied, from which results on a tetrahedron is deduced by invariance. The results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the tetrahedron is shown to satisfy an explicit compact formula and the Lebesgue constant of the interpolation is shown to be in the order of $(\log n)^3$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.