Abstract
We extended the (G′/G)-expansion method to two well-known nonlinear differential-difference equations, the discrete nonlinear Schrödinger equation and the Toda lattice equation, for constructing traveling wave solutions. Discrete soliton and periodic wave solutions with more arbitrary parameters, as well as discrete rational wave solutions, are revealed. It seems that the utilized method can provide highly accurate discrete exact solutions to NDDEs arising in applied mathematical and physical sciences.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have