Abstract

Motivated by questions from Ehrhart theory, we present new results on discrete equidecomposability. Two rational polygons P and Q are said to be discretely equidecomposable if there exists a piecewise affine-unimodular bijection (equivalently, a piecewise affine-linear bijection that preserves the integer lattice \({\mathbb {Z}}^2\)) from P to Q. We develop an invariant for a particular version of this notion called rational finite discrete equidecomposability. We construct triangles that are Ehrhart equivalent but not rationally finitely discretely equidecomposable, thus providing a partial negative answer to a question of Haase–McAllister on whether Ehrhart equivalence implies discrete equidecomposability. Surprisingly, if we delete an edge from each of these triangles, there exists an infinite rational discrete equidecomposability relation between them. Our final section addresses the topic of infinite equidecomposability with concrete examples and a potential setting for further investigation of this phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.