Abstract

We propose and analyze a second-order partitioned time-stepping method for a two-phase flow problem in porous media. The algorithm is a refactorization of Cauchy's one-leg θ-method: the implicit backward Euler method on [tn,tn+θ], and a linear extrapolation on [tn+θ,tn+1]. In the backward Euler step, the decoupled equations are solved iteratively, with the iterations converging linearly. In the absence of the chain rule for time-discrete setting, we approximate the change in the free energy by the product of a second-order accurate discrete gradient (chemical potential) and the one-step increment of the state variables. Similar to the continuous case, we also prove a discrete Helmholtz free energy balance equation, without numerical dissipation. In the numerical tests we compare this symplectic implicit midpoint method (θ=1/2) with the classic backward Euler method, and two implicit-explicit time-lagging schemes. The midpoint method outperforms the other schemes in terms of rates of convergence, long-time behavior and energy approximation, for both small and large values of the time step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.