Abstract
We use the discrete dipole approximation (DDA) method to calculate the intensity and the linear polarization degree of light scattered by agglomerated debris particles with hierarchical structure as functions of size parameter (varying from x = 2 to x = 14) and phase angle. Such structures are important, e.g., for cometary and interplanetary dust particles. Calculations for three combinations of refractive index were made, which correspond to regions of water ice, organic matter, and silicates. We examine the photometric and polarization properties of agglomerated particles with prefractal (Whitten-Sander model) and nonfractal porous structures of particle fragments formed by dipoles. We find that the aggregated particles can produce significant negative polarization at small phase angles. Increasing the packing density of dipoles and/or refractive index makes the negative polarization more prominent. The depth of the negative polarization branch depends on the type of internal structure: the negative polarization branch of particles having nonfractal structure is noticeably shallower in comparison with that of those having a prefractal structure. The negative polarization branch depth strongly depends on the imaginary part of the refractive index and increases with decreasing absorption. Polarization phase curves for agglomerated debris particles become smoother as the number of hierarchical levels increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.