Abstract

The anterior pituitary gland, which is derived from a common primordium originating in Rathke's pouch, contains phenotypically distinct cell types, each of which express discrete trophic hormones: adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), prolactin, growth hormone, and follicle stimulating hormone (FSH)/luteinizing hormone (LH). The structurally related prolactin and growth hormone genes, which are evolutionarily derived from a single primordial gene, are expressed in discrete cell types--lactotrophs and somatotrophs, respectively--with their expression virtually limited to the pituitary gland. The pituitary hormones exhibit a temporal pattern of developmental expression with rat growth hormone and prolactin characteristically being the last hormones expressed. The reported co-expression of these two structurally related neuroendocrine genes within single cells prior to the appearance of mature lactotrophs, in a subpopulation of mature anterior pituitary cells, and in many pituitary adenomas raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s). We now report the identification and characterization of nucleotide sequences in the 5'-flanking regions of the rat prolactin and growth hormone genes, respectively, which act in a position- and orientation-independent fashion to transfer cell-specific expression to heterologous genes. At least one putative trans-acting factor required for the growth hormone genomic sequence to exert its effects is apparently different from those modulating the corresponding enhancer element(s) of the prolactin gene because a pituitary 'lactotroph' cell line producing prolactin but not growth hormone selectively fails to express fusion genes containing the growth hormone enhancer sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call