Abstract

In the anterior pituitary gland, there are five phenotypically distinct cell types, including cells that produce either prolactin (lactotrophs) or growth hormone (somatotrophs). Multiple, related cis-active elements that exhibit synergistic interactions appear to be the critical determinants of the transcriptional activation of the rat prolactin and growth hormone genes. A common positive tissue-specific transcription factor, referred to as Pit-1, appears to bind to all the cell-specific elements in each gene and to be required for the activation of both the prolactin and growth hormone genes. The data suggest that, in the course of development, a single tissue-specific factor activates sets of genes that ultimately exhibit restricted cell-specific expression and define cellular phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.