Abstract
Satellite-based land surface temperature (Ts) with continuous global coverage is increasingly used as a complementary measure for air temperature (Ta), yet whether they observe similar temporal trends remains unknown. Here, we systematically analyzed the trend of the difference between satellite-based Ts and station-based Ta (Ts–Ta) over 2003–2022. We found the global land warming rate inffered from Ts was on average 42.6% slower than that from Ta (Ts–Ta trend: −0.011 °C yr−1, p = 0.06) during daytime of summer. This slower Ts-based warming was attributed to recent Earth greening, which effectively cooled canopy surface through enhancing evapotranspiration and turbulent heat transfer. However, Ts showed faster warming than Ta during summer nighttime (0.015 °C yr−1, p < 0.01), winter daytime (0.0069 °C yr−1, p = 0.08) and winter nighttime (0.0042 °C yr−1, p = 0.16), when vegetation activity is limited by temperature and solar radiation. Our results indicate potential biases in assessments of atmospheric warming and the vegetation-air temperature feedbacks using satellite-observed surface temperature proxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.