Abstract

A respiratory syndrome COVID-19 pandemic has become a serious global concern. Still, a large number of people have been daily infected worldwide. Discovering COVID-19 infection patterns is significant for health providers towards understanding the infection factors. Current COVID-19 research works have not been attempted to discover the infection patterns, yet. In this paper, we employ an Association Rules Apriori (ARA) algorithm to discover the infection patterns from COVID-19 recovered patients’ data. A non-clinical COVID-19 dataset is introduced and analyzed. A sample of recovered patients’ data is manually collected in Saudi Arabia. Our manual computation and experimental results show strong associative rules with high confidence scores among males, weight above 70 kilograms, height above 160 centimeters, and fever patterns. These patterns are the strongest infection patterns discovered from COVID-19 recovered patients’ data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.