Abstract

Highly connected molecular building blocks (MBBs) have been demonstrated to play a crucial role in reticular chemistry, particularly in predicting the topologies of metal-organic frameworks. Metal phosphonate clusters exhibit considerable advantages in constructing high-connectivity MBBs, owing to the multiple coordination modes offered by phosphonic ligands. Herein, four metal (M = CoII, MnII) phosphonocarboxylate frameworks (CoPCF-1,2 and MnPCF-1,2) were successfully prepared under solvothermal conditions by utilizing the phosphonocarboxylic ligand, 4'-phosphonobiphenyl-3,5-dicarboxylic acid (H4pbpdc), and their structural characterization was performed using single-crystal X-ray diffraction (SCXRD). The structures feature a duodenary nuclear M12(µ3-OH)2(CO2)12(PO3)6(DMF)6/(CH3COO)4.5 cluster, bearing resemblance to the well-known Wells-Dawson ion from polyoxometallate chemistry. It is the first time a Wells-Dawson type cage has served as an 18-connected molecular building block, forming two kinds of porous metal phosphonocarboxylate frameworks with novel (3,18)-connected gez and gea topologies. Their permanent porosities were confirmed through N2 adsorption studies. Notably, the MBB Co12 cluster-based CoPCF-1 shows a loss and recovery process of µ3-OH through single-crystal-to-single-crystal (SCSC) transformation. The magnetic properties of the four compounds exhibit antiferromagnetic behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call