Abstract
The small GTPase Cdc42 is an integral component of the cytoskeleton, and its dysregulation leads to pathophysiological conditions, such as cancer. Binding of Cdc42 to the scaffold protein IQGAP1 stabilizes Cdc42 in its active form. The interaction between Cdc42 and IQGAP1 enhances migration and invasion of cancer cells. Disrupting this association could impair neoplastic progression and metastasis; however, no effective means to achieve this has been described. Here, we screened 78,500 compounds using a homogeneous time resolved fluorescence-based assay to identify small molecules that disrupt the binding of Cdc42 to IQGAP1. From the combined results of the validation assay and counter-screens, we selected 44 potent compounds for cell-based experiments. Immunoprecipitation and cell viability analysis rendered four lead compounds, namely NCGC00131308, NCGC00098561, MLS000332963 and NCGC00138812, three of which inhibited proliferation and migration of breast carcinoma cells. Microscale thermophoresis revealed that two compounds bind directly to Cdc42. One compound reduced the amount of active Cdc42 in cells and effectively impaired filopodia formation. Docking analysis provided plausible models of the compounds binding to the hydrophobic pocket adjacent to the GTP binding site of Cdc42. In conclusion, we identified small molecules that inhibit binding between Cdc42 and IQGAP1, which could potentially yield chemotherapeutic agents.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.