Abstract

ABSTRACTThe aim of this study was to identify candidate transcriptional biomarkers so as to provide a new method for monitoring amantadine residues during the feeding of broiler chicken. RNA sequencing (RNA-seq) and bioinformatic analyses were conducted to examine the transcriptomic changes and screen differentially expressed genes (DEGs) in broiler chicken breast muscle and liver tissues treated with amantadine. The results indicated that a total of 170 DEGs were screened from broiler chicken breast muscle tissues after amantadine was fed. Among the genes, 120 were up-regulated and 50 were down-regulated. The gene ontology (GO) terms for these genes mainly existed in the areas of hydrolase activity, immune reaction and chemokine activity. The significantly enriched pathways in the Kyoto Encyclopedia for Genes and Genomes (KEGG) were in phagosomes, cell adhesion molecules (CAMs), lysosomes and extracellular matrix (ECM) receptors. From the broiler chicken liver tissues, 172 DEGs were screened, among which 116 were up-regulated and 56 were down-regulated. The GO terms of these DEGs were related to functions such as catalytic activities, metabolic activities, oxidation-reduction activities, immune reactions and cofactor binding. The significantly enriched KEGG pathways existed in metabolism, CAM, ECM receptor reaction and drug metabolism-cytochrome P450. According to the fold-change (FC), significance levels, functional annotations and possible biological processes of DEGs, 11 and 9 candidate DEGs related to amantadine treatment were further screened from broiler chicken breast muscle and liver tissues, respectively. In addition, the quantitative real-time polymerase chain reaction (qRT-PCR) verification showed exactly concordant results with the RNA-seq data. Principal components analysis (PCA) on the qRT-PCR data resulted in the separation of treated samples from the control samples in both tissues. The results provided a basis for identification of transcriptional biomarkers for detecting amantadine residues in broiler chicken breast muscle and liver tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call