Abstract

BackgroundDeveloping resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.MethodsA set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design.ResultsStarting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.ConclusionsGradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for de novo design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.

Highlights

  • Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options

  • Even though the global malaria map has been shrinking over the past 50 years, more people are at risk of suffering from malaria today than at any other time in history-close to 40% of the world’s population live in countries where the disease is endemic and nearly 247 million people suffer from the disease every year [1]

  • Chemistry and biology can be fully derived from quantum mechanics [19,20]

Read more

Summary

Introduction

Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Many malaria drugs in use today have high toxicity and low therapeutic indices. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. A wide range of effective tools exists, including insecticide and larvicide spraying, the use of insecticideimpregnated bed nets to protect against infection by mosquitoes, and medicines to both treat the infection and prevent it in pregnant women and in young children [3,4,5]. Due to emerging drug resistance, new medicines are needed to treat malaria episodes, mainly targeting the asexual blood stages of P. falciparum [7]. Blocking the transmission of the parasite by the mosquito vector and, in the case of P. vivax infections, targeting the dormant liver stage of the parasite, are other important steps towards eradication of the disease [8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.