Abstract

The PI3K/AKT/mTOR pathway is one of the most common dysregulated signaling cascade responses in human cancers, playing a crucial role in cell proliferation and angiogenesis. Therefore, the development of anticancer drugs targeting the PI3K and mTOR pathways has become a research hotspot in cancer treatment. In this study, the PI3K selective inhibitor GDC-0941 was selected as a lead compound, and 28 thiophenyl-triazine derivatives with aromatic urea structures were synthesized based on scaffold hopping, serving as a novel class of PI3K/mTOR dual inhibitors. The most promising compound Y-2 was obtained through antiproliferative activity evaluation, kinase inhibition, and toxicity assays. The results showed that Y-2 demonstrated potential inhibitory effects on both PI3K kinase and mTOR kinase, with IC50 values of 171.4 and 10.2 nM, respectively. The inhibitory effect of Y-2 on mTOR kinase was 52 times greater than that of the positive drug GDC-0941. Subsequently, the antitumor activity of Y-2 was verified through pharmacological experiments such as AO staining, cell apoptosis, scratch assays, and cell colony formation. The antitumor mechanism of Y-2 was further investigated through JC-1 experiments, real-time quantitative PCR, and Western blot analysis. Based on the above experiments, Y-2 can be identified as a potent PI3K/mTOR dual inhibitor for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call