Abstract

Patients with high-risk neuroblastoma face limited treatment choices, typically involving a combination of cytotoxic and differentiation maintenance therapies due to a scarcity of drugs. Evidence suggests that targeted inhibitors may provide opportunities for inducing neuroblastoma differentiation while inhibiting proliferation. Here, we demonstrate the synergistic effect of inhibiting Akt and ROCK in antineuroblastoma and present the design and discovery of a new Akt/ROCK inhibitor, B12. It displays strong antiproliferative effects and excellent differentiation inducing activity against Neuro2a cells. Treatment with B12 results in the arrest of G0/G1 cell cycles, a significant decrease in N-myc protein level, and an increase in differentiation markers. The administration of B12 effectively suppresses xenograft tumor growth and promotes differentiation. Overall, the discovery of B12 based on the Akt/ROCK dual inhibition strategy may provide hope for the development of more effective and targeted therapies for this challenging disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.