Abstract

Canonical transient receptor potential channel 5 (TRPC5) plays a key role in the regulation of central nervous system, cardiovascular system, kidney disease, cancer, and could be also involved in liver function, arthritis, diabetes-associated complications and so on. However, evidence of TRPC5 function on cellular or organismic levels is sparse. There is still a need for identifying novel and efficient TRPC5 channel modulators to study TRPC5 function. In this study, based on the hTRPC5 structure obtained by homology modeling and the predicted binding site, we have performed virtual screening of 212,736 compounds from the specs database(http://www.specs.net) to find potential hTRPC5 modulators. Lipinski and Veber rules, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) and PAINS (Pan Assay Interference structures) filters were used to screen the large database. Further, multi-software combination docking, cluster analysis and interaction analysis were used to select 20 potential active candidates with novel skeleton. 4 Hits, bearing appreciable binding affinity with hTRPC5 were selected for 40ns all-atom molecular dynamics (MD) simulations under explicit water conditions. The MD simulation results suggested that the 4 Hits binding induces a slight structural change and stabilizes the hTRPC5 structure. In addition, decomposition free energy demonstrated that residues TRP434, LEU437, MET438, ALA441, ILE484, ILE487, LEU488, LEU491, LEU515, ILE517, LEU518, LEU521, PHE531, THR607, VAL610, ILE611, VAL615 played the critical role on system stability. 4 Hits, as potential modulators of hTRPC5, may be potential leads to develop effective therapeutics hTRPC5-associated diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.