Abstract

A series of novel acridane-based tubulin polymerization inhibitors were designed, synthesized, and bioevaluated as anticancer agents. The most potent compound NT-6 exhibited high tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and remarkable antiproliferative potency against four cancer cell lines with an average IC50 of 30 nM, better than colchicine and the hit compound 1f (IC50 of 65 and 126 nM, respectively). In addition, NT-6 (10 mg/kg) exerted excellent antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 65.1% without apparent toxicity. Importantly, the combination of NT-6 with a small-molecule PD-L1 inhibitor NP-19 decreased tumor burden significantly (TGI% = 77.6%). Moreover, the combination of NT-6 with NP-19 enhanced the antitumor immune response, mediated by a decrease of PD-L1 expression levels and increased infiltration of antitumor CD8+ effector T cells in tumor tissues. Collectively, NT-6 represents a novel tubulin polymerization inhibitor with immunopotentiating effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call