Abstract

A novel series of terminal and internal phosphonate esters based on our previously developed aryl carboxylate-type tryptase selective inhibitor 1 was synthesized. The potency of these synthesized compounds was assessed in vitro with an enzyme inhibition assay using three available serine proteases, that is, tryptase, trypsin, and thrombin. The internal phosphonate derivative 6 showed potent thrombin inhibitory activity with an IC50 value of 1.0 μM, whereas it exhibited no or only weak tryptase and trypsin inhibition at 10 μM. The Lineweaver-Burk plot analysis indicates that the inhibition pattern of thrombin with 6 is non-competitive in spite of the fact that the lead carboxylate compound 1 is competitive inhibitor. Therefore, the skeletal conversion of the carboxylate into a phosphonate alters the mode of molecular recognition of these inhibitors by thrombin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.