Abstract

In the pursuit of developing more potent and effective targeted kinase inhibitors (TKIs), a series of new compounds, specifically halogenated '(E)-4-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N'-benzylidenebenzohydrazides', were successfully synthesized in three steps with high yields. Among these novel compounds, namely 5e, 5h, 5k, and 5l, promising cytotoxic effects were observed against four different cancer cell lines, with IC50 values ranging from 29 to 59 µM. Notably, compound 5k emerged as the most potent inhibitor, exhibiting significant activity against EGFR, Her2, VEGFR2, and CDK2 enzymes, with IC50 values ranging from 40 to 204 nM, comparable to the well-known TKI sunitinib (IC50 = 261 nM). Mechanistic investigations of compound 5k revealed its ability to induce cell cycle arrest and apoptosis in HepG2 cells, accompanied by a notable increase in proapoptotic proteins caspase-3 and Bax, as well as the downregulation of Bcl-2 activity. Furthermore, molecular docking studies indicated similar binding interactions between compound 5k and the four enzymes, as observed with sunitinib. These findings highlight the potential of compound 5k as a promising candidate for further development as a multi-targeted kinase inhibitor with enhanced potency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call