Abstract
We carried out time-series photometric observations in the Rc-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four eclipsing binary stars in this field. In order to characterize these four newly discovered binaries, we derived their orbital periods by their times of light minimum, estimated their effective temperatures based on their (J — H) colors and analyzed their light curves using the Wilson-Devinney light curve modeling technique. Our analyses reveal that all of them are contact binaries with short orbital periods of less than 0.5 d, with spectral types from late-F to mid-K. Among them, one is a typical A subtype contact binary with a mass ratio around 0.5 and a period of 0.44 d, and one is an H subtype contact binary with a high mass ratio around 0.9 and a short period of about 0.27 d. The other two systems show low amplitudes of light variation (ARc ≤0.11m); their actual photometric mass ratios could not be determined by the light curve modelings, probably due to their attributes of being partially eclipsing stars. A preliminary analysis for these two systems indicates that both of them are likely to be W subtype contact binaries with low orbital inclinations. In addition, both of these two low amplitude variables show asymmetric distorted light curves (e.g., O'Connell effect of ΔRc ≃0.02m) during the observing runs, suggesting the presence of starspots on these two systems. More interestingly, the one showing a large case of the O'Connell effect presented a remarkable variation in the shape of the light curve on a time scale of one day, indicating that this star is in a very active state. Therefore, these two stars need spectroscopic observations to precisely determine their parameters, as well as further photometric observations to understand the properties of their magnetic activity, e.g., the evolution of starspots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.