Abstract

Nicotinamide adenine dinucleotide (NAD) is essentially involved in many biological processes of cancer cells, yet chemical intervention of NAD biosynthesis failed to obtain an optimal therapeutic benefit. We herein developed a new strategy to induce catastrophic NAD depletion by concurrently impairing NAD synthesis and promoting NAD consumption. We designed a series of new compounds that conjugate an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in the NAD salvage pathway, with a DNA-alkylating agent. Among them, compound 11b exhibited potent anticancer efficacy in cancer cell lines and mouse tumor models with intrinsic resistance to the parent compound FK866 or chlorambucil. Compound 11b caused catastrophic NAD depletion via a synergistic effect between the NAD salvage pathway blockade and DNA damage-triggered NAD consumption. Our findings suggest a new intervention strategy for causing catastrophic NAD depletion in cancer cells and provide basis for the development of new inhibitors targeting NAD metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call