Abstract
Geo-social data plays a significant role in location discovery and recommendation. In this light, we propose and study a novel problem of discovering accessible locations in spatial networks using region-based geo-social data. Given a set Q of query regions, the top-k accessible location discovery query (k ALDQ) finds k locations that have the highest spatial-density correlations to Q. Both the spatial distances between locations and regions and the POI (point of interest) density within the regions are taken into account. We believe that this type of k ALDQ query can bring significant benefit to many applications such as travel planning, facility allocation, and urban planning. Three challenges exist in k ALDQ: (1) how to model the spatial-density correlation practically, (2) how to prune the search space effectively, and (3) how to schedule the searches from multiple query regions. To tackle the challenges and process k ALDQ effectively and efficiently, we first define a series of spatial and density metrics to model the spatial-density correlation. Then we propose a novel three-phase solution with a pair of upper and lower bounds of the spatial-density correlation and a heuristic scheduling strategy to schedule multiple query regions. Finally, we conduct extensive experiments on real and synthetic spatial data to demonstrate the performance of the developed solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.